Distribution Sécurisée du Temps et Systèmes Spatiaux

Grenoble, 13-15 novembre 2024

CONCEPTS ET OUTILS DE LA MÉTROLOGIE TEMPS-FRÉQUENCE

Prof. François Vernotte

FEMTO-ST - Université de Franche-Comté/CNRS Observatoire THETA de Franche-Comté/Bourgogne FIRST-TF

UNIVERSITE FRANCHE-COMTE

- Prequency domain
- 3 Long-term stability: the variances

 Time and frequency quantities
 Notations in the time don

 Frequency domain
 Frequency noise vs Phat

 Long-term stability: the variances
 Measurement in the time

F. Vernotte

Outline

Time and frequency quantities

- Notations in the time domain
- Frequency noise vs Phase noise
- Measurement in the time domain

2) Frequency domain

 Time and frequency quantities
 Notations in the time domain

 Frequency domain
 Frequency noise vs Phase no

 Long-term stability: the variances
 Measurement in the time dom

Introduction

Notations in the time domain

$$V(t) = V_0 \sin \left[2\pi\nu_0 t + \varphi\right]$$

where arphi(t) is the phase "*noise*"

• Time error (or phase time) *x*(*t*):

$$V(t) = V_0 \sin \left[2\pi\nu_0 \left(t + x(t)\right)\right]$$
with $x(t) = \frac{\varphi(t)}{2\pi}$ [s]

"My watch is 39 seconds late":

t_{watch} = 10 h 10 min 37 s

• t_{ref} = 10 h,11,11,16, 16,2, , , ,

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024 F. Vernotte

Concepts et Outils de la Métrologie Temps-Fréquence

4

ъ

Time and frequency quantities Frequency domain Long-term stability: the variances Key Stations in the time domain Frequency noise vs Phase no Measurement in the time dom

Introduction

Notations in the time domain

"My watch is 39 seconds late":

 $V(t) = V_0 \sin [2\pi\nu_0 t + \varphi(t)]$ where $\varphi(t)$ is the phase "noise"

• Time error (or phase time) x(t): $V(t) = V_0 \sin [2\pi\nu_0 (t + x(t))]$ with $x(t) = \frac{\varphi(t)}{2\pi\nu_0}$ [S]

t_{watch} = 10 h 10 min 37 s
 t_{ref} = 10 h 11 min 16 s

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024 F. Vernotte

ъ

Xd→→a→39€≻∢≡≻

Time and frequency quantities Frequency domain Long-term stability: the variances Notations in the time domain Frequency noise vs Phase noise

Introduction

Notations in the time domain

"My watch is 39 seconds late":

$$V(t) = V_0 \sin \left[2\pi\nu_0 t + \varphi(t)\right]$$

where $\varphi(t)$ is the phase "noise"

• Time error (or phase time) *x*(*t*):

$$V(t)=V_0\sin\left[2\pi
u_0\left(t+x(t)
ight)
ight)$$
with $x(t)=rac{arphi(t)}{2\pi
u_0}$ [s]

t_{watch} = 10 h 10 min 37 s
 t_{ref} = 10 h 11 min 16 s

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024 F. Vernotte Conce

ъ

⋊⋳⋼⊸⋳⋻⋧⋼⋇⋼∊

Time and frequency quantities Frequency domain Long-term stability: the variances Notations in the time domain Frequency noise vs Phase noise

Introduction

Notations in the time domain

$V(t) = V_0 \sin \left[2\pi\nu_0 t + \varphi(t)\right]$

where $\varphi(t)$ is the phase "noise"

• $t_{watch} = 10 \text{ h} 10 \text{ min } 37 \text{ s}$

• t_{ref} = 10 h 11 min 16 s

• Time error (or phase time) *x*(*t*):

$$V(t) = V_0 \sin \left[2\pi
u_0 \left(t + x(t)
ight)
ight]$$

with $x(t) = rac{arphi(t)}{2\pi
u_0}$ [s]

x(t) = -39 s

"My watch is 39 seconds late":

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

 \Rightarrow

Notations in the time domain Frequency noise vs Phase noise Measurement in the time domain

Phase and frequency noise

$$V(t) = V_0 sin [2\pi
u_0 t + arphi(t)]$$

• Instantaneous frequency $\nu(t)$:

$$V(t) = V_0 \sin \left[2\pi\nu(t)t\right]$$
with $\nu(t) = \frac{1}{2\pi} \frac{d\left[2\pi\nu_0 t + \varphi(t)\right]}{dt} = \nu_0 + \frac{1}{2\pi} \frac{d\varphi(t)}{dt}$ [Hz]

• Frequency noise $\Delta \nu(t)$:

$$\Delta\nu(t) = \frac{1}{2\pi} \frac{d\varphi(t)}{dt} \qquad [Hz]$$

• Frequency deviation y(t):

$$y(t) = rac{\Delta
u(t)}{
u_0} = rac{1}{2\pi
u_0} rac{d arphi(t)}{dt} \qquad [dimensionless]$$

F. Vernotte

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

ъ

Notations in the time domain Frequency noise vs Phase noise Measurement in the time domain

Phase and frequency noise

$$V(t) = V_0 sin [2\pi
u_0 t + arphi(t)]$$

• Instantaneous frequency $\nu(t)$:

$$V(t) = V_0 \sin \left[2\pi\nu(t)t\right]$$

with $\nu(t) = \frac{1}{2\pi} \frac{d\left[2\pi\nu_0 t + \varphi(t)\right]}{dt} = \nu_0 + \frac{1}{2\pi} \frac{d\varphi(t)}{dt}$ [Hz]

• Frequency noise
$$\Delta \nu(t)$$
:

$$\Delta
u(t) = rac{1}{2\pi} rac{d arphi(t)}{\mathrm{d}t} \qquad [Hz]$$

• Frequency deviation y(t):

$$arphi(t)=rac{\Delta
u(t)}{
u_0}=rac{1}{2\pi
u_0}rac{darphi(t)}{\mathrm{d}t} \qquad [dimensionless]$$

F. Vernotte

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

ъ

Notations in the time domain Frequency noise vs Phase noise Measurement in the time domain

Phase and frequency noise

$$V(t) = V_0 sin [2\pi
u_0 t + arphi(t)]$$

• Instantaneous frequency $\nu(t)$:

$$V(t) = V_0 \sin [2\pi\nu(t)t]$$
with $\nu(t) = \frac{1}{2\pi} \frac{d[2\pi\nu_0 t + \varphi(t)]}{dt} = \nu_0 + \frac{1}{2\pi} \frac{d\varphi(t)}{dt}$ [Hz]

• Frequency noise
$$\Delta \nu(t)$$
:

$$\Delta
u(t) = rac{1}{2\pi} rac{d arphi(t)}{\mathrm{d} t} \qquad [Hz]$$

• Frequency deviation *y*(*t*):

$$y(t) = rac{\Delta
u(t)}{
u_0} = rac{1}{2\pi
u_0} rac{d arphi(t)}{dt} \qquad [dimensionless]$$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

Notations in the time domain Frequency noise vs Phase noise Measurement in the time domain

Frequency noise vs Phase noise

Phase and frequency noise: 2 representations of 1 phenomenon

$$\begin{array}{l} x(t) = \frac{\varphi(t)}{2\pi\nu_0} \\ y(t) = \frac{1}{2\pi\nu_0} \frac{d\varphi(t)}{dt} \end{array} \right\} \quad \Rightarrow \quad y(t) = \frac{dx(t)}{dt}$$

A fundamental difference:

- $\varphi(t)$ and x(t) are instantaneous
- $\Delta \nu(t)$ and y(t) have to be averaged Example of a Π -counter:

$$\bar{y}_k = \frac{1}{\tau} \int_{t_k}^{t_k + \tau} y(t) dt = \frac{x(t_k + \tau) - x(t_k)}{\tau}$$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

F. Vernotte Concepts et Outils de la Métrologie Temps-Fréquence

Notations in the time domain Frequency noise vs Phase noise Measurement in the time domain

Frequency noise vs Phase noise

Phase and frequency noise: 2 representations of 1 phenomenon

$$\begin{array}{l} x(t) = \frac{\varphi(t)}{2\pi\nu_0} \\ y(t) = \frac{1}{2\pi\nu_0} \frac{d\varphi(t)}{dt} \end{array} \right\} \quad \Rightarrow \quad y(t) = \frac{dx(t)}{dt}$$

A fundamental difference:

• $\varphi(t)$ and x(t) are instantaneous

• $\Delta \nu(t)$ and y(t) have to be averaged

Notations in the time domain Frequency noise vs Phase noise Measurement in the time domain

Frequency noise vs Phase noise

Phase and frequency noise: 2 representations of 1 phenomenon

$$\begin{array}{l} x(t) = \frac{\varphi(t)}{2\pi\nu_0} \\ y(t) = \frac{1}{2\pi\nu_0} \frac{d\varphi(t)}{dt} \end{array} \right\} \quad \Rightarrow \quad y(t) = \frac{dx(t)}{dt}$$

A fundamental difference:

- $\varphi(t)$ and x(t) are instantaneous
- $\Delta \nu(t)$ and y(t) have to be averaged Example of a Π -counter:

$$ar{y}_k = rac{1}{ au} \int_{t_k}^{t_k+ au} y(t) \mathrm{d}t - rac{x(t_k+ au) - x(t_k)}{ au}$$

Notations in the time domain Frequency noise vs Phase noise Measurement in the time domain

Frequency noise vs Phase noise

Phase and frequency noise: 2 representations of 1 phenomenon

$$\begin{array}{l} x(t) = \frac{\varphi(t)}{2\pi\nu_0} \\ y(t) = \frac{1}{2\pi\nu_0} \frac{d\varphi(t)}{dt} \end{array} \right\} \quad \Rightarrow \quad y(t) = \frac{dx(t)}{dt}$$

A fundamental difference:

- $\varphi(t)$ and x(t) are instantaneous
- $\Delta \nu(t)$ and y(t) have to be averaged Example of a Π -counter:

$$\bar{\mathbf{y}}_{k} = \frac{1}{\tau} \int_{t_{k}}^{t_{k}+\tau} \mathbf{y}(t) \mathrm{d}t = \frac{\mathbf{x}(t_{k}+\tau) - \mathbf{x}(t_{k})}{\tau}$$

Notations in the time domain Frequency noise *vs* Phase noise Measurement in the time domain

Phase-time measurements: the time interval counter

Measure the time between

- the rising edge of the DUT signal
- the rising edge of the reference signal

Conversion to frequency deviation: $\bar{y}_k = \frac{x(u_k + \tau) - x}{\tau}$

- Available sampling rate: several MSample/s
- Needs: τ ~1 s!
- \Rightarrow Possible to 'shape' the \bar{y}_k by weighted average:

Other measurements and methods

Frequency counter, phasemeter, beat-note method, frequency comb (optical domain)...

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024 F. Vernotte

Concepts et Outils de la Métrologie Temps-Fréquence

Notations in the time domain Frequency noise *vs* Phase noise Measurement in the time domain

Phase-time measurements: the time interval counter

Notations in the time domain Frequency noise vs Phase noise Measurement in the time domain

Phase-time measurements: the time interval counter

F. Vernotte

Notations in the time domain Frequency noise vs Phase noise Measurement in the time domain

Phase-time measurements: the time interval counter

F. Vernotte

 Time and frequency quantities
 Notations in the frequency d

 Frequency domain
 Short-term stability: the phase

 Long-term stability: the variances
 Noise model

Outline

Time and frequency quantities

2 Frequency domain

- Notations in the frequency domain
- Short-term stability: the phase noise
- Noise model

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

Notations in the frequency domain Short-term stability: the phase noise Noise model

Notations in the frequency domain

Power Spectral Densities (PSD)

• Fourier Transform (finite energy):

$$\Phi(f) = \int_{-\infty}^{+\infty} \varphi(t) e^{-j2\pi f t} \mathrm{d}t \qquad [s]$$

• Energy Spectral Density (finite energy):

$$\left|\Phi(f)\right|^{2} = \left|\int_{-\infty}^{+\infty} \varphi(t) e^{-j2\pi \hbar t} \mathrm{d}t\right|^{2} \qquad [s^{2}]$$

• Power Spectral Density (finite power):

$$arphi(t)= rac{1}{T} \left[arphi(t)e^{-j2\pi t} \mathrm{d}t
ight]^2 \left[s
ight] \equiv [t]$$

F. Vernotte

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

Notations in the frequency domain Short-term stability: the phase noise Noise model

Notations in the frequency domain

Power Spectral Densities (PSD)

• Fourier Transform (finite energy):

$$\Phi(f) = \int_{-\infty}^{+\infty} \varphi(t) e^{-j2\pi f t} dt \qquad [s]$$

• Energy Spectral Density (finite energy):

$$|\Phi(f)|^2 = \left|\int_{-\infty}^{+\infty} \varphi(t) e^{-j2\pi f t} dt\right|^2 [s^2]$$

• Power Spectral Density (finite power):

$$(f) = \overline{T} \qquad \varphi(t) e^{-j2\pi t} \mathrm{d}t$$

F. Vernotte

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

9

Notations in the frequency domain Short-term stability: the phase noise Noise model

Notations in the frequency domain

Power Spectral Densities (PSD)

• Fourier Transform (finite energy):

$$\Phi(f) = \int_{-\infty}^{+\infty} \varphi(t) e^{-j2\pi f t} dt \qquad [s]$$

• Energy Spectral Density (finite energy):

$$\left|\Phi(f)\right|^2 = \left|\int_{-\infty}^{+\infty} \varphi(t) e^{-j2\pi f t} \mathrm{d}t\right|^2 \qquad [s^2]$$

• Power Spectral Density (finite power):

$$S_{arphi}(t) = \left| \int_{-T/2}^{+T/2} \varphi(t) e^{-j2\pi t t} \mathrm{d} t
ight|^2$$

F. Vernotte

$$[s] \equiv [Hz^{-1}]$$

イロト イポト イヨト イヨト

Notations in the frequency domain Short-term stability: the phase noise Noise model

Notations in the frequency domain

Power Spectral Densities (PSD)

• Fourier Transform (finite energy):

$$\Phi(f) = \int_{-\infty}^{+\infty} \varphi(t) e^{-j2\pi f t} dt \qquad [s]$$

• Energy Spectral Density (finite energy):

$$\left|\Phi(f)\right|^{2} = \left|\int_{-\infty}^{+\infty} \varphi(t) e^{-j2\pi f t} dt\right|^{2} \qquad [s^{2}]$$

• Power Spectral Density (finite power):

$$S_{\varphi}(t) = \left| \lim_{t \to \infty} \left\langle \frac{1}{T} \left| \int_{-T/2}^{+T/2} \varphi(t) e^{-j2\pi t t} \mathrm{d}t \right|^2 \right\rangle$$
 $[s] \equiv [Hz^{-1}]$

イロト イポト イヨト イヨト

Notations in the frequency domain Short-term stability: the phase noise Noise model

Notations in the frequency domain

Power Spectral Densities (PSD)

• Fourier Transform (finite energy):

$$\Phi(f) = \int_{-\infty}^{+\infty} \varphi(t) e^{-j2\pi f t} dt \qquad [s]$$

• Energy Spectral Density (finite energy):

$$\left|\Phi(f)\right|^{2} = \left|\int_{-\infty}^{+\infty} \varphi(t) e^{-j2\pi f t} dt\right|^{2} \qquad [s^{2}]$$

• Power Spectral Density (finite power):

$$S_{\varphi}(f) = \lim_{T \to \infty} \left[\left\langle \frac{1}{T} \left| \int_{-T/2}^{+T/2} \varphi(t) e^{-j2\pi f t} dt \right|^2 \right\rangle \right] \qquad [s] \equiv [Hz^{-1}]$$

イロト イポト イヨト イヨト

Notations in the frequency domain Short-term stability: the phase noise Noise model

Short-term stability: the phase noise

The one-sided PSD

 $\varphi(t)$ is real

$$\mathcal{I}\left[arphi(t)
ight]=0 \quad \Leftrightarrow \quad \mathcal{S}_{arphi}(f)=\mathcal{S}_{arphi}(-f)$$

Definition of the "one-sided" phase Power Spectral density $S_{\varphi}(f)^{1S}$:

$$\left\{ \begin{array}{ll} S_{\varphi}(f)^{1S}=2S_{\varphi}(f)^{2S} & \text{ if } f\geq 0\\ S_{\varphi}(f)^{1S}=0 & \text{ if } f<0 \end{array} \right.$$

F. Vernotte

Units on log-log plots

10 log₁₀ [$S_{\varphi}(f)$] is expressed in **dB/Hz**

L(f), a survival from the past

In many data shets, one finds

 $L(f) = 10 \log_{10} \left| \frac{1}{2} S_{\varphi}(f) \right|$ is expressed in **dBc/Hz**

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

Notations in the frequency domain Short-term stability: the phase noise Noise model

Short-term stability: the phase noise

The one-sided PSD

 $\varphi(t)$ is real

$$\mathcal{I}\left[arphi(t)
ight] = oldsymbol{0} \quad \Leftrightarrow \quad oldsymbol{S}_arphi(f) = oldsymbol{S}_arphi(-f)$$

Definition of the "one-sided" phase Power Spectral density $S_{\varphi}(f)^{1S}$:

$$\left\{ \begin{array}{ll} S_{\varphi}(f)^{1S}=2S_{\varphi}(f)^{2S} & \quad \text{if } f\geq 0\\ S_{\varphi}(f)^{1S}=0 & \quad \text{if } f<0 \end{array} \right.$$

F. Vernotte

Units on log-log plots

 $10 \log_{10} [S_{\varphi}(f)]$ is expressed in **dB/Hz**

L(f), a survival from the past

In many data shets, one finds

 $L(f) = 10 \log_{10} \left| \frac{1}{2} S_{\varphi}(f) \right|$ is expressed in **dBc/Hz**

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

Short-term stability: the phase noise

Short-term stability: the phase noise

The one-sided PSD

 $\varphi(t)$ is real

$$\mathcal{I}\left[arphi(t)
ight] = oldsymbol{0} \quad \Leftrightarrow \quad oldsymbol{S}_arphi(f) = oldsymbol{S}_arphi(-f)$$

Definition of the "one-sided" phase Power Spectral density $S_{co}(f)^{1S}$:

$$\left\{ \begin{array}{ll} S_{\varphi}(f)^{1S}=2S_{\varphi}(f)^{2S} & \quad \text{if } f\geq 0\\ S_{\varphi}(f)^{1S}=0 & \quad \text{if } f<0 \end{array} \right.$$

Units on log-log plots

 $10 \log_{10} [S_{\omega}(f)]$ is expressed in **dB/Hz**

L(f), a survival from the past

In many data shets, one finds $L(f) = 10\log_{10}\left[\frac{1}{2}S_{\varphi}(f)\right]$ is expressed in **dBc/Hz** F. Vernotte

 \Rightarrow

F. Vernotte

Notations in the frequency domain Short-term stability: the phase noise Noise model

Relationships between PSD

Time error PSD: $S_x(f)$

•
$$x(t) = \frac{\varphi(t)}{2\pi\nu_0}$$

• Dimension:
$$[s^3] \equiv [Hz^{-3}]$$

Frequency deviation PSD:
$$S_y(f)$$

•
$$y(t) = \frac{1}{2\pi\nu_0} \frac{d\varphi(t)}{dt}$$

$$S_y(f)=rac{f^2}{
u_0^2}S_arphi(f)$$

 $S_y(f) = 4\pi^2 f^2 S_x(f)$

• Dimension: $[s] \equiv [Hz^{-1}]$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

Concepts et Outils de la Métrologie Temps-Fréquence

ъ

イロン イロン イヨン イヨン

 $S_x(f)=rac{1}{4\pi^2
u_0^2}S_arphi(f)$

Notations in the frequency domain Short-term stability: the phase noise Noise model

Relationships between PSD

Time error PSD: $S_x(f)$

•
$$x(t) = rac{\varphi(t)}{2\pi\nu_0}$$

$$\Rightarrow$$

F. Vernotte

$$S_x(f)=\frac{1}{4\pi^2\nu_0^2}S_\varphi(f)$$

• Dimension: $[s^3] \equiv [Hz^{-3}]$

Frequency deviation PSD: $S_y(f)$

•
$$y(t) = \frac{1}{2\pi\nu_0} \frac{d\varphi(t)}{dt} \Rightarrow$$

•
$$y(t) = \frac{dx(t)}{dt} \Rightarrow$$

$$S_{\mathcal{Y}}(f) = \frac{f^2}{\nu_0^2} S_{\varphi}(f)$$

.....

$$S_y(f) = 4\pi^2 f^2 S_x(f)$$

• Dimension: $[s] \equiv [Hz^{-1}]$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

ъ

A D K A B K A B K A B K

Noise model

The power law noise model

$$S_{y}(f) = \sum_{lpha=-2}^{+2} h_{lpha} f^{lpha} \qquad lpha ext{ integer}$$

$S_y(f)$	$oldsymbol{S}_arphi(oldsymbol{f})$	Noise type	Origin
$h_{-2}f^{-2}$	$b_{-4}f^{-4}$	Random Walk Freq. Mod.	Environment
$h_{-1}f^{-1}$	$b_{-3}f^{-3}$	Flicker F.M.	Resonator
h_0	$b_{-2}f^{-2}$	White F.M.	Thermal noise
h ₁ f	$b_{-1}f^{-1}$	Flicker Phase Mod.	Electronic noise
$h_2 f^2$	b_0	White P.M.	External white noise

ъ

イロト イタト イヨト イヨト

White FM

Random

Walk FM

F. Vernotte

Notations in the frequency domain Short-term stability: the phase noise Noise model

Concepts et Outils de la Métrologie Temps-Fréquence

White FM vs Random Walk FM

Notations in the frequency domain Short-term stability: the phase noise Noise model

Phase noise measurement

Courtesy of Ulrich L. Rohde, Synergy Microwave Corporation 99

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

F. Vernotte Concepts et Outils de la Métrologie Temps-Fréquence

Time and frequency quantities The Allan variance (AVAR) Frequency domain Other variances Long-term stability: the variances Practical use of the Allan variance

F. Vernotte

Outline

Time and frequency quantities

2) Frequency domain

Long-term stability: the variances

- The Allan variance (AVAR)
- Other variances
- Practical use of the Allan variance

The Allan variance (AVAR) Other variances Practical use of the Allan variance

A statistical estimator

as well as a spectral analysis tool

- Definition of the true variance: $l^{2}(\tau) = \left\langle \left(\bar{y}_{k} - \langle \bar{y}_{k} \rangle \right)^{2} \right\rangle$
- Estimation of the true variance:

$$\sigma^2(\boldsymbol{N},\tau) = \frac{1}{\boldsymbol{N}-1} \sum_{i=1}^{N} \left(\bar{y}_i - \frac{1}{N} \sum_{j=1}^{N} \bar{y}_j \right)^2$$

• The Allan variance (2-sample variance): $\sigma_y^2(\tau) = \sigma^2(2,\tau) = \sum_{i=1}^2 \left(\bar{y}_i - \frac{1}{2} \sum_{j=1}^2 \bar{y}_j \right)^2$

- $\langle
 angle$ stands for:
- ensemble average
- time average

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

A statistical estimator

as well as a spectral analysis tool

- Definition of the true variance: $l^{2}(\tau) = \left\langle \left(\bar{y}_{k} - \langle \bar{y}_{k} \rangle \right)^{2} \right\rangle$
- Estimation of the true variance:

$$\sigma^2(\boldsymbol{N},\tau) = \frac{1}{N-1} \sum_{i=1}^N \left(\bar{y}_i - \frac{1}{N} \sum_{j=1}^N \bar{y}_j \right)^2$$

• The Allan variance (2-sample variance):

$$\sigma_y^2(\tau) = \langle \sigma^2(\mathbf{2},\tau) \rangle = \left\langle \sum_{i=1}^2 \left(\bar{y}_i - \frac{1}{2} \sum_{j=1}^2 \bar{y}_j \right) \right\rangle$$

- () stands for:
- ensemble average
- time average

~

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

A statistical estimator

as well as a spectral analysis tool

- Definition of the true variance: $l^{2}(\tau) = \left\langle \left(\bar{y}_{k} - \langle \bar{y}_{k} \rangle \right)^{2} \right\rangle$
- Estimation of the true variance:

$$\sigma^2(\boldsymbol{N},\tau) = \frac{1}{N-1} \sum_{i=1}^N \left(\bar{y}_i - \frac{1}{N} \sum_{j=1}^N \bar{y}_j \right)^2$$

• The Allan variance (2-sample variance):

$$\sigma_y^2(\tau) = \left\langle \sigma^2(2,\tau) \right\rangle = \left\langle \sum_{i=1}^2 \left(\bar{y}_i - \frac{1}{2} \sum_{j=1}^2 \bar{y}_j \right)^2 \right\rangle$$

$$\sigma_{y}^{2}(\tau) = \frac{1}{2} \left\langle \left(\bar{y}_{2} - \bar{y}_{1} \right)^{2} \right\rangle = \text{AVAR}(\tau)$$

y_k samples _____

- $\langle \rangle$ stands for:
- ensemble average
- time average
~

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

A statistical estimator

as well as a spectral analysis tool

- Definition of the true variance: $l^{2}(\tau) = \left\langle \left(\bar{y}_{k} - \langle \bar{y}_{k} \rangle \right)^{2} \right\rangle$
- Estimation of the true variance:

$$\sigma^2(\boldsymbol{N},\tau) = \frac{1}{N-1} \sum_{i=1}^N \left(\bar{y}_i - \frac{1}{N} \sum_{j=1}^N \bar{y}_j \right)^2$$

• The Allan variance (2-sample variance):

$$\sigma_y^2(\tau) = \left\langle \sigma^2(\mathbf{2},\tau) \right\rangle = \left\langle \sum_{i=1}^2 \left(\bar{y}_i - \frac{1}{2} \sum_{j=1}^2 \bar{y}_j \right)^2 \right\rangle$$

$$\sigma_{y}^{2}(\tau) = \frac{1}{2} \left\langle \left(\bar{y}_{2} - \bar{y}_{1} \right)^{2} \right\rangle = \text{AVAR}(\tau)$$

- $\langle \rangle$ stands for:
- ensemble average
- time average
- $\bullet \equiv convolution.$

イロト イポト イヨト イヨト

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

A statistical estimator

as well as a spectral analysis tool

- Definition of the true variance: $l^{2}(\tau) = \left\langle \left(\bar{y}_{k} - \langle \bar{y}_{k} \rangle \right)^{2} \right\rangle$
- Estimation of the true variance:

$$\sigma^2(\boldsymbol{N},\tau) = \frac{1}{N-1} \sum_{i=1}^N \left(\bar{y}_i - \frac{1}{N} \sum_{j=1}^N \bar{y}_j \right)^2$$

• The Allan variance (2-sample variance):

$$\sigma_y^2(\tau) = \left\langle \sigma^2(\mathbf{2}, \tau) \right\rangle = \left\langle \sum_{i=1}^2 \left(\bar{y}_i - \frac{1}{2} \sum_{j=1}^2 \bar{y}_j \right)^2 \right\rangle$$

$$\sigma_{\mathbf{y}}^{2}(\tau) = \frac{1}{2} \left\langle \left(\bar{\mathbf{y}}_{2} - \bar{\mathbf{y}}_{1} \right)^{2} \right\rangle = \text{AVAR}(\tau)$$

- $\langle \rangle$ stands for:
- ensemble average
- time average
- \equiv convolution...

< ロト < 同ト < ヨト < ヨト

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

A spectral analysis tool

as well as a statistical estimator

Convolution in the time domain...

$$\sigma_y^2(\tau) = \left\langle \left[\int_{-\infty}^{+\infty} y(t) h_y(t_k - t) dt \right]^2 \right\rangle$$

with
$$\begin{cases} h_y(t) = \frac{-1}{\sqrt{2}\tau} & \text{if } -\tau \ge t < 0\\ h_y(t) = \frac{+1}{\sqrt{2}\tau} & \text{if } 0 \ge t < \tau\\ h_y(t) = 0 & \text{else} \end{cases}$$

... filtering in the frequency domain

$$\sigma_y^2(\tau) = \int_0^\infty S_y(f) \left| H_y(f) \right|^2 df$$

with $\left| H_y(f) \right|^2 = \left| \text{FT} \left[h_y(t) \right] \right|^2 = 2 \frac{\sin^4(\pi \tau)}{(-\tau)^2}$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

The Allan variance (AVAR) Other variances Practical use of the Allan variance

A spectral analysis tool

as well as a statistical estimator

Convolution in the time domain...

$$\sigma_y^2(\tau) = \left\langle \left[\int_{-\infty}^{+\infty} y(t) h_y(t_k - t) dt \right]^2 \right\rangle$$

with
$$\begin{cases} h_y(t) = \frac{-1}{\sqrt{2}\tau} & \text{if } -\tau \ge t < 0\\ h_y(t) = \frac{+1}{\sqrt{2}\tau} & \text{if } 0 \ge t < \tau\\ h_y(t) = 0 & \text{else} \end{cases}$$

... filtering in the frequency domain

$$\sigma_y^2(\tau) = \int_0^\infty S_y(f) |H_y(f)|^2 df$$

with $|H_y(f)|^2 = |\operatorname{FT}[h_y(t)]|^2 = 2\frac{\sin^4(\pi\tau f)}{(\pi\tau f)^2}$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Link between noise levels and variance responses

$$\sigma_y^2(au) = 2 \int_0^{+\infty} h_lpha f^lpha rac{\sin^4(\pi au f)}{(\pi au f)^2} \mathrm{d}f$$

f_h is the high cut-off frequency

$$\frac{S_{y}(f)}{\sigma_{y}^{2}(\tau)} = \frac{h_{-2}f^{-2}}{3} + \frac{h_{-1}f^{-1}}{2} + \frac{h_{0}f^{0}}{2\tau} + \frac{h_{+1}f^{+1}}{4\pi^{2}\tau^{2}} + \frac{h_{+2}f^{+2}}{4\pi^{2}\tau^{2}} + \frac{h_{+2}f^{+2}}{4\pi^{2}\tau^{2}} + \frac{h_{+2}f_{+2}}{4\pi^{2}\tau^{2}} + \frac$$

and $\sigma_v^2(\tau) = \frac{1}{2}D_1^2\tau^2$ for a linear frequency drift: $y(t) = D_1 t$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

F. Vernotte Concepts et Outils de la Métrologie Temps-Fréquence

The Allan variance (AVAR) Other variances Practical use of the Allan varianc

Link between noise levels and variance responses

$$\sigma_y^2(\tau) = 2 \int_0^{+\infty} h_\alpha f^\alpha \frac{\sin^4(\pi \tau f)}{(\pi \tau f)^2} \mathrm{d}f$$

f_h is the high cut-off frequency

$$\frac{S_{y}(f) \| h_{-2}f^{-2} \| h_{-1}f^{-1} \| h_{0}f^{0} \| h_{+1}f^{+1} \| h_{+2}f^{+2}}{\sigma_{y}^{2}(\tau) \| \frac{2\pi^{2}h_{-2}\tau}{3} \| 2\ln(2)h_{-1} \| \frac{h_{0}}{2\tau} \| \frac{[1.04+3\ln(2\pi f_{h}\tau)]h_{+1}}{4\pi^{2}\tau^{2}} \| \frac{3h_{+2}f_{h}}{4\pi^{2}\tau^{2}}}{and} \sigma_{y}^{2}(\tau) = \frac{1}{2}D_{1}^{2}\tau^{2} \text{ for a linear frequency drift: } y(t) = D_{1}t$$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

Image: A 1 = 1

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$B\$F\$I呈다 ↓ 늘 ▶

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$B\$F\$I呈다 ↓ 늘 ▶

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$B\$F\$I呈다 ↓ 늘 ▶

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$B\$F\$I呈다 ↓ 늘 ▶

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$B\$F\$I呈다 ↓ 늘 ▶

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$율\$P\$I呈다 ↓ 늘 ▶

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$율\$P\$I呈다 ↓ 늘 ▶

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$율\$P\$I呈다 ↓ 늘 ▶

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$율\$P\$I呈다 ↓ 늘 ▶

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$율\$P\$I呈다 ↓ 늘 ▶

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$율\$P\$I呈다 ↓ 늘 ▶

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$율\$P\$I呈다 ↓ 늘 ▶

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$율\$P\$I呈다 ↓ 늘 ▶

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

● high#告이\$B\$F\$I呈다 ↓ 늘 ▶

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

● high#告이\$B\$P\$1일P. ↓ 늘 ▶

less correlated estimates

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

τ_0 -steps moving average

Benefits and drawbacks :

• lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

less correlated estimates

F. Vernotte

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance with or without overlapping

Allan variance with overlapping

 τ_0 -steps moving average

Benefits and drawbacks :

lower dispersion

more correlated estimates

Allan variance without overlapping

Shifted by τ -steps : $\tau = 3\tau_0 \Leftrightarrow \overline{Y}_1 = (\overline{y}_1 + \overline{y}_2 + \overline{y}_3)/3$

Benefits and drawbacks :

- less correlated estimates
- higher dispersion

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance versus Allan deviation

$$\mathsf{ADEV}(au) = \sigma_y(au) = \sqrt{\sigma_y^2(au)}$$

Physical meaning

• $\sigma_y(\tau) \equiv -\frac{\tau}{\tau}$ *Ex.:* Cs clock $\sigma_y(\tau = 1 \text{ day}) = 10^{-14} \Rightarrow \Delta t \approx 10^{-14} \cdot 10^5 = 10^{-9} = 1 \text{ ns over 1 day}$ • $\sigma_y(\tau) \equiv \frac{\Delta f}{\nu_0}$ (during τ) *Ex.:* H-Maser @ 100 MHz $\sigma_y(\tau = 1\text{ h}) = 10^{-14} \Rightarrow \Delta f \approx 10^{-14} \cdot 10^8 = 10^{-6} = 1 \mu \text{Hz over 1 h}$

Benefits and drawbacks

Easy to interpret

Biased

inition curves, always use the Allan variance.

F. Vernotte

ヘロト ヘロト ヘビト ヘビト

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance versus Allan deviation

$$\mathsf{ADEV}(au) = \sigma_y(au) = \sqrt{\sigma_y^2(au)}$$

Physical meaning • $\sigma_y(\tau) \equiv \frac{\Delta t}{\tau}$ Ex.: Cs clock $\sigma_y(\tau = 1 \text{day}) = 10^{-14} \Rightarrow \Delta t \approx 10^{-14} \cdot 10^5 = 10^{-9} = 1 \text{ ns over 1 day}$ Ex.: H-Maser @ 100 MHz $\sigma_y(\tau = 1h) = 10^{-14} \Rightarrow \Delta t \approx 10^{-14} \cdot 10^9 = 10^{-9} = 1\mu\text{Hz over}$

Benefits and drawbacks

Easy to interpret

Biased

lion curves, always use the Allan variance.

F. Vernotte

=

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance versus Allan deviation

$$\mathsf{ADEV}(au) = \sigma_y(au) = \sqrt{\sigma_y^2(au)}$$

Physical meaning

• $\sigma_y(\tau) \equiv \frac{\Delta t}{\tau}$ Ex.: Cs clock $\sigma_y(\tau = 1 \text{day}) = 10^{-14} \Rightarrow \Delta t \approx 10^{-14} \cdot 10^5 = 10^{-9} = 1 \text{ ns over 1 day}$ • $\sigma_y(\tau) \equiv \frac{\Delta f}{\nu_0}$ (during τ) Ex.: H-Maser @ 100 MHz $\sigma_y(\tau = 1\text{h}) = 10^{-14} \Rightarrow \Delta f \approx 10^{-14} \cdot 10^8 = 10^{-6} = 1\mu\text{Hz over 1 h}$

Benefits and drawbacks

Easy to interpret

Biased

curves, always use the Allan variance

F. Vernotte

=

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance versus Allan deviation

$$\mathsf{ADEV}(au) = \sigma_y(au) = \sqrt{\sigma_y^2(au)}$$

Physical meaning

•
$$\sigma_y(\tau) \equiv \frac{\Delta t}{\tau}$$

Ex.: Cs clock $\sigma_y(\tau = 1 \text{ day}) = 10^{-14} \Rightarrow \Delta t \approx 10^{-14} \cdot 10^5 = 10^{-9} = 1 \text{ ns over 1 day}$
• $\sigma_y(\tau) \equiv \frac{\Delta f}{\nu_0}$ (during τ)
Ex.: H-Maser @ 100 MHz $\sigma_y(\tau = 1\text{ h}) = 10^{-14} \Rightarrow \Delta f \approx 10^{-14} \cdot 10^8 = 10^{-6} = 1\mu\text{Hz over 1 h}$

Benefits and drawbacks

• Easy to interpret

Biased

curves, always use the Allan variance

F. Vernotte

=

ヘロト ヘロト ヘビト ヘビト

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance versus Allan deviation

$$\mathsf{ADEV}(au) = \sigma_y(au) = \sqrt{\sigma_y^2(au)}$$

Physical meaning

•
$$\sigma_y(\tau) \equiv \frac{\Delta t}{\tau}$$

Ex.: Cs clock $\sigma_y(\tau = 1 \text{ day}) = 10^{-14} \Rightarrow \Delta t \approx 10^{-14} \cdot 10^5 = 10^{-9} = 1 \text{ ns over 1 day}$
• $\sigma_y(\tau) \equiv \frac{\Delta f}{\nu_0}$ (during τ)
Ex.: H-Maser @ 100 MHz $\sigma_y(\tau = 1\text{h}) = 10^{-14} \Rightarrow \Delta f \approx 10^{-14} \cdot 10^8 = 10^{-6} = 1\mu\text{Hz over 1 h}$

Benefits and drawbacks

• Easy to interpret

Biased

curves, always use the Allan variance

F. Vernotte

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

=

ヘロト ヘロト ヘビト ヘビト

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Allan variance versus Allan deviation

$$\mathsf{ADEV}(au) = \sigma_y(au) = \sqrt{\sigma_y^2(au)}$$

Physical meaning

•
$$\sigma_y(\tau) \equiv \frac{\Delta t}{\tau}$$

Ex.: Cs clock $\sigma_y(\tau = 1 \text{ day}) = 10^{-14} \Rightarrow \Delta t \approx 10^{-14} \cdot 10^5 = 10^{-9} = 1 \text{ ns over 1 day}$
• $\sigma_y(\tau) \equiv \frac{\Delta f}{\nu_0}$ (during τ)
Ex.: H-Maser @ 100 MHz $\sigma_y(\tau = 1\text{h}) = 10^{-14} \Rightarrow \Delta f \approx 10^{-14} \cdot 10^8 = 10^{-6} = 1\mu\text{Hz over 1 h}$

Benefits and drawbacks

Easy to interpret

Biased

Never fit the Allan deviation curves, always use the Allan variance!

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

F. Vernotte Concepts et Outils de la Métrologie Temps-Fréquence

The Allan variance (AVAR) Other variances Practical use of the Allan variance

The most widely used variances

• The Hadamard variance (Picinbono):

1

$$\sigma_{H}^{2}(\tau) = rac{1}{6} \left\langle (-\bar{y}_{1} + 2\bar{y}_{2} - \bar{y}_{3})^{2}
ight
angle.$$

$$|H_H(f)|^2 = \frac{8}{3} \frac{\sin^6(\pi \tau f)}{(\pi \tau f)^2}.$$

The modified Allan variance (MVAR):

$$\mathsf{Mod}\sigma_{y}^{2}(\tau) = \frac{1}{2} \left\langle \left(\frac{1}{n} \sum_{i=1}^{n} \bar{y}_{i+n} - \bar{y}_{i} \right)^{2} \right\rangle_{I}$$
$$|H_{\mathcal{M}}(f)|^{2} = \frac{\sin^{6}(\pi \tau f)}{(\pi \tau f)^{2} n^{2} \sin^{2}(\pi \tau_{0} f)}.$$

F. Vernotte

• The time variance (TVAR): $\sigma_x^2(\tau) = \frac{\tau^2}{2} \text{Mod}\sigma_y^2(\tau)$.

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

4 回下 4 周下 4 图下 4 图下

The Allan variance (AVAR) Other variances Practical use of the Allan variance

The most widely used variances

• The Hadamard variance (Picinbono):

$$\sigma_{H}^{2}(\tau) = \frac{1}{6} \left\langle \left(-\bar{y}_{1} + 2\bar{y}_{2} - \bar{y}_{3}\right)^{2} \right\rangle.$$

$$|H_H(f)|^2 = \frac{8}{3} \frac{\sin^6(\pi \tau f)}{(\pi \tau f)^2}.$$

• The modified Allan variance (MVAR): recommended with A counters

$$\mathsf{Mod}\sigma_y^2(\tau) = \frac{1}{2} \left\langle \left(\frac{1}{n} \sum_{i=1}^n \bar{y}_{i+n} - \bar{y}_i \right)^2 \right\rangle$$
$$|\mathcal{H}_M(f)|^2 = \frac{\sin^6(\pi \tau f)}{(\pi \tau f)^2 n^2 \sin^2(\pi \tau_0 f)}.$$

F. Vernotte

• The time variance (TVAR): $\sigma_x^2(\tau) = \frac{\tau}{2} \operatorname{Mod} \sigma_y^2(\tau)$

化口压 化间压 化温压 化温压

The Allan variance (AVAR) Other variances Practical use of the Allan variance

The most widely used variances

• The Hadamard variance (Picinbono):

$$\sigma_{H}^{2}(\tau) = \frac{1}{6} \left\langle \left(-\bar{y}_{1} + 2\bar{y}_{2} - \bar{y}_{3}\right)^{2} \right\rangle.$$

$$|H_H(f)|^2 = \frac{8}{3} \frac{\sin^6(\pi \tau f)}{(\pi \tau f)^2}.$$

• The modified Allan variance (MVAR): recommended with Λ counters

$$\mathsf{Mod}\sigma_y^2(\tau) = \frac{1}{2} \left\langle \left(\frac{1}{n} \sum_{i=1}^n \bar{y}_{i+n} - \bar{y}_i \right)^2 \right\rangle$$
$$|H_M(f)|^2 = \frac{\sin^6(\pi \tau f)}{(\pi \tau f)^2 n^2 \sin^2(\pi \tau_0 f)}.$$

F. Vernotte

• The time variance (TVAR): $\sigma_x^2(\tau) = \frac{\tau}{2} \operatorname{Mod} \sigma_v^2(\tau)$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

化口压 化间压 化温压 化温压

The Allan variance (AVAR) Other variances Practical use of the Allan variance

The most widely used variances

• The Hadamard variance (Picinbono):

$$\sigma_{H}^{2}(\tau) = \frac{1}{6} \left\langle \left(-\bar{y}_{1} + 2\bar{y}_{2} - \bar{y}_{3}\right)^{2} \right\rangle.$$

$$|H_H(f)|^2 = \frac{8}{3} \frac{\sin^6(\pi \tau f)}{(\pi \tau f)^2}.$$

• The modified Allan variance (MVAR): recommended with Λ counters

$$\operatorname{\mathsf{Mod}}_{\mathcal{Y}}^{2}(\tau) = \frac{1}{2} \left\langle \left(\frac{1}{n} \sum_{i=1}^{n} \bar{y}_{i+n} - \bar{y}_{i} \right)^{2} \right\rangle$$
$$|H_{\mathcal{M}}(f)|^{2} = \frac{\sin^{6}(\pi \tau f)}{(\pi \tau f)^{2} n^{2} \sin^{2}(\pi \tau_{0} f)}.$$

• The time variance (TVAR): $\sigma_x^2(\tau) = \frac{\tau^2}{3} \text{Mod} \sigma_y^2(\tau)$. Recommended for time
The Allan variance (AVAR) Other variances Practical use of the Allan variance

The most widely used variances

• The Hadamard variance (Picinbono):

$$\sigma_{H}^{2}(\tau) = \frac{1}{6} \left\langle \left(-\bar{y}_{1} + 2\bar{y}_{2} - \bar{y}_{3}\right)^{2} \right\rangle.$$

$$|H_H(f)|^2 = \frac{8}{3} \frac{\sin^6(\pi \tau f)}{(\pi \tau f)^2}.$$

• The modified Allan variance (MVAR): recommended with Λ counters

$$\mathsf{Mod}\sigma_y^2(\tau) = \frac{1}{2} \left\langle \left(\frac{1}{n} \sum_{i=1}^n \bar{y}_{i+n} - \bar{y}_i \right)^2 \right\rangle$$
$$|H_M(f)|^2 = \frac{\sin^6(\pi \tau f)}{(\pi \tau f)^2 n^2 \sin^2(\pi \tau_0 f)}.$$

• The time variance (TVAR): $\sigma_x^2(\tau) = \frac{\tau^2}{3} \text{Mod} \sigma_y^2(\tau)$. Recommended for time

applications

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Responses of the variances

$S_y(f)$	$\sigma_{H}^{2}(au)$	$Mod\sigma_y^2(au)$	$\sigma_x^2(\tau)$
$(s\equiv Hz^{-1})$			
$h_{-4}f^{-4}$	$\frac{44\pi^4 h_{-4}\tau^3}{60}$	-	-
$h_{-3}f^{-3}$	$\frac{[27\ln(2)-32\ln(3)]\pi^2h_{-3}\tau^2}{6}$	-	-
$h_{-2}f^{-2}$	$\frac{\pi^2 h_{-2}\tau}{3}$	$\frac{11\pi^2 h_{-2}\tau}{20}$	$\frac{11\pi^2 h_{-2}\tau^3}{60}$
$h_{-1}f^{-1}$	$\frac{[8\ln(2)-3\ln(3)]h_{-1}}{2}$	$\frac{[27\ln(3) - 32\ln(2)]h_{-1}}{8}$	$\frac{[27\ln(3) - 32\ln(2)]h_{-1}}{24\tau^2}$
$h_0 f^0$	$\frac{h_0}{2\tau}$	$\frac{h_0}{4\tau}$	$\frac{h_0\tau}{12}$
$h_{+1}f^{+1}$	$\frac{5[0,964+\ln(\pi\tau f_h)]h_{+1}}{6\pi^2\tau^2}$	$\frac{[24\ln(2)-9\ln(3)]h_{+1}}{8\pi^2\tau^2}$	$\frac{[8\ln(2) - 3\ln(3)]h_{+1}}{8\pi^2}$
$h_{+2}f^{+2}$	$\frac{5h_{+2}f_h}{6\pi^2\tau^2}$	$\frac{3h_{+2}}{8\pi^2\tau^3}$	$rac{h_{+2}}{8\pi^2 au}$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

ъ

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Time Interval Error

TIE

The Time Interval Error (TIE) is the difference between the extrapolation of the clock model and the clock state at a given time.

The Maximum Time Interval Error (MTIE) can be computed from **TDev** and the type of noise.

Vernotte, J. Delporte, M. Brunet, and T. Tournier. Uncertainties

f drift coefficients and extrapolation errors: Application to clock

ъ

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Time Interval Error

TIE

The Time Interval Error (TIE) is the difference between the extrapolation of the clock model and the clock state at a given time.

MTIE

The Maximum Time Interval Error (MTIE) can be computed from **TDev** and the type of noise.

F. Vernotte, J. Delporte, M. Brunet, and T. Tournier. Uncertainties of drift coefficients and extrapolation errors: Application to clock error prediction. Metrologia. 38(4):325–342. 2001.

F. Vernotte

Practical use of the Allan variance Long-term stability: the variances Basic interpretation of an Allan variance curve (I) 10-22-10⁻²³-10⁻²⁴-+Allan variance $\sigma_y{}^2(\tau)$ 10-25 10⁻²⁶-10⁻²⁷ 10⁻²⁸-10⁻²⁹-106 100 10^{2} 10³ 105 10¹ 10⁴ Integration time τ (s)

F. Vernotte

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

Time and frequency quarities Frequency domain Long-term stability: the variances Basic interpretation of an Allan variance curve (I) 10⁻²²

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Basic interpretation of an Allan variance curve (II)

Remember...

$$\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline S_y(f) & h_{-2}f^{-2} & h_{-1}f^{-1} & h_0f^0 & h_{+1}f^{+1} & h_{+2}f^{+2} \\ \hline \sigma_y^2(\tau) & \frac{2\pi^2h_{-2}\tau}{3} & 2\ln(2)h_{-1} & \frac{h_0}{2\tau} & \frac{\left[1.04+3\ln(2\pi f_h\tau)\right]h_{+1}}{4\pi^2\tau^2} & \frac{3h_{+2}f_h}{4\pi^2\tau^2} \\ \hline \end{array}$$

• τ^{-1} asymptote: \Rightarrow white FM noise • τ^{0} asymptote: \Rightarrow flicker FM noise (f^{-1} F

ъ

ヘロン 人間 とくほ とくほ とう

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Basic interpretation of an Allan variance curve (II)

Remember...

• τ^{-1} asymptote: \Rightarrow white FM noise

• τ^0 asymptote: \Rightarrow flicker FM noise (f⁻¹ FM)

ъ

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Basic interpretation of an Allan variance curve (II)

Remember...

• τ^{-1} asymptote: \Rightarrow white FM noise

• τ^0 asymptote: \Rightarrow flicker FM noise (f^{-1} FM)

ъ

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Basic interpretation of an Allan variance curve (III)

Spectral analysis

• τ^{-1} asymptote: \Rightarrow white FM noise $6.5 \cdot 10^{-23} \tau^{-1} = \frac{h_0}{2\tau} \Rightarrow h_0 = 1.3 \cdot 10^{-22} \text{ s}$ • $h_0 = 1.3 \cdot 10^{-22} \text{ s}$ 4 $10^{-28} = 2\ln(2)h_0$ $\Rightarrow h_0 = 2\ln(2)$ $S_1(t) = 1.3 \cdot 10^{-22} + 2.9 \cdot 10^{-28} t^{-1} \text{ s}$

Time stability estimation

$$\sigma_y(\tau) = \sqrt{6.5 \cdot 10^{-23} \tau^{-1} + 4 \cdot 10^{-28}}$$

F. Vernotte

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Basic interpretation of an Allan variance curve (III)

Spectral analysis

• τ^{-1} asymptote: \Rightarrow white FM noise $6.5 \cdot 10^{-23} \tau^{-1} = \frac{h_0}{2\tau} \Rightarrow h_0 = 1.3 \cdot 10^{-22} \text{ s}$ • τ^0 asymptote: \Rightarrow flicker FM noise (f^{-1} FM) $4 \cdot 10^{-28} = 2 \ln(2) h_{-1} \Rightarrow h_{-1} = \frac{4 \cdot 10^{-28}}{2 \ln(2)} = 2.9 \cdot 10^{-28}$ $\Rightarrow f(f) = 1.3 \cdot 10^{-28} + 2.9 \cdot 10^{-28} \text{ m/s}$

Time stability estimation

$$\sigma_{\gamma}(\tau) = \sqrt{6.5 \cdot 10^{-23} \tau^{-1} + 4 \cdot 10^{-28}}$$

F. Vernotte

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Basic interpretation of an Allan variance curve (III)

Spectral analysis

•
$$\tau^{-1}$$
 asymptote: \Rightarrow white FM noise
 $6.5 \cdot 10^{-23} \tau^{-1} = \frac{h_0}{2\tau} \Rightarrow h_0 = 1.3 \cdot 10^{-22} \text{ s}$
• τ^0 asymptote: \Rightarrow flicker FM noise $(f^{-1} \text{ FM})$
 $4 \cdot 10^{-28} = 2 \ln(2) h_{-1} \Rightarrow h_{-1} = \frac{4 \cdot 10^{-28}}{2 \ln(2)} = 2.9 \cdot 10^{-28}$
 $\Rightarrow S_y(f) = 1.3 \cdot 10^{-22} + 2.9 \cdot 10^{-28} f^{-1} \text{ s}$

Time stability estimation

$\sigma_{\gamma}(\tau) = \sqrt{6.5 \cdot 10^{-23} \tau^{-1} + 4 \cdot 10^{-28}}$

F. Vernotte

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

Concepts et Outils de la Métrologie Temps-Fréquence

ъ

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Basic interpretation of an Allan variance curve (III)

Spectral analysis

•
$$\tau^{-1}$$
 asymptote: \Rightarrow white FM noise
 $6.5 \cdot 10^{-23}\tau^{-1} = \frac{h_0}{2\tau} \Rightarrow h_0 = 1.3 \cdot 10^{-22} \text{ s}$
• τ^0 asymptote: \Rightarrow flicker FM noise $(f^{-1} \text{ FM})$
 $4 \cdot 10^{-28} = 2 \ln(2)h_{-1} \Rightarrow h_{-1} = \frac{4 \cdot 10^{-28}}{2 \ln(2)} = 2.9 \cdot 10^{-28}$
 $\Rightarrow S_y(f) = 1.3 \cdot 10^{-22} + 2.9 \cdot 10^{-28} f^{-1} \text{ s}$

Time stability estimation

$$\sigma_{\rm y}(\tau) = \sqrt{6.5 \cdot 10^{-23} \tau^{-1} + 4 \cdot 10^{-28}}$$

F. Vernotte

• $\tau < 1$ day: $\sigma_y(\tau) \approx 8 \cdot 10^{-12} \tau^{-1/2}$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

ъ

A D K A B K A B K A B K

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Basic interpretation of an Allan variance curve (III)

Spectral analysis

•
$$\tau^{-1}$$
 asymptote: \Rightarrow white FM noise
 $6.5 \cdot 10^{-23}\tau^{-1} = \frac{h_0}{2\tau} \Rightarrow h_0 = 1.3 \cdot 10^{-22} \text{ s}$
• τ^0 asymptote: \Rightarrow flicker FM noise $(f^{-1} \text{ FM})$
 $4 \cdot 10^{-28} = 2 \ln(2)h_{-1} \Rightarrow h_{-1} = \frac{4 \cdot 10^{-28}}{2 \ln(2)} = 2.9 \cdot 10^{-28}$
 $\Rightarrow S_y(f) = 1.3 \cdot 10^{-22} + 2.9 \cdot 10^{-28} f^{-1} \text{ s}$

Time stability estimation

$$\sigma_y(au) = \sqrt{6.5\cdot 10^{-23} au^{-1} + 4\cdot 10^{-28}}$$

F. Vernotte

•
$$\tau < 1$$
 day: $\sigma_y(\tau) \approx 8 \cdot 10^{-12} \tau^{-1/2}$

ъ

A D K A B K A B K A B K

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Basic interpretation of an Allan variance curve (III)

Spectral analysis

•
$$\tau^{-1}$$
 asymptote: \Rightarrow white FM noise
 $6.5 \cdot 10^{-23}\tau^{-1} = \frac{h_0}{2\tau} \Rightarrow h_0 = 1.3 \cdot 10^{-22} \text{ s}$
• τ^0 asymptote: \Rightarrow flicker FM noise $(f^{-1} \text{ FM})$
 $4 \cdot 10^{-28} = 2 \ln(2)h_{-1} \Rightarrow h_{-1} = \frac{4 \cdot 10^{-28}}{2 \ln(2)} = 2.9 \cdot 10^{-28}$
 $\Rightarrow S_y(f) = 1.3 \cdot 10^{-22} + 2.9 \cdot 10^{-28} f^{-1} \text{ s}$

Time stability estimation

$$\sigma_y(au) = \sqrt{6.5\cdot 10^{-23} au^{-1} + 4\cdot 10^{-28}}$$

F. Vernotte

•
$$\tau < 1$$
 day: $\sigma_y(\tau) \approx 8 \cdot 10^{-12} \tau^{-1/2}$
• $\tau > 1$ day: $\sigma_y(\tau) \approx 2 \cdot 10^{-14}$

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

ъ

Long-term stability: the variances

Practical use of the Allan variance

Basic interpretation of a TDev curve

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

ъ

Long-term stability: the variances

Practical use of the Allan variance

Basic interpretation of a TDev curve

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024

ъ

The Allan variance (AVAR) Other variances Practical use of the Allan variance

Softwares for frequency stability estimation

- For windows: *Stable 32* (W. Riley, M. Danielson, V. Dwivedi) Graphical interface, proprietary code, no longer maintained (currently) http://www.stable32.com/, https://github.com/IEEE-UFFC/stable32
- For unix and macOS: SigmaTheta (F. Vernotte, F. Meyer, A. Kinali, B. Dubois, J.M. Friedt, C. Plantard, P.Y. Bourgeois) Collection of many chainable C-modules to build scripts, open source https://gitlab.com/sigmathetal/
- For python (cross-platform): AllanTools (A. Wallin, D. Price, C. Carson, F. Meynadier, Y. Xie, E. Benkler)
 Many python functions, open source

https://pypi.org/project/AllanTools/, https://github.com/aewallin/allantools

Time and frequency quantities Frequency domain Long-term stability: the variances The Allan variance (AVAR) Other variances Practical use of the Allan variance

Bibliography

- IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology–Random Instabilities. IEEE Std 1139-2022 (Revision of IEEE Std 1139-2008), pp. 1–60, 2022.
- D.W. Allan and J. A. Barnes. A modified "allan variance" with increased oscillator characterization ability. In Proceedings of the 35th FCS, pp. 470–475, Fort Monmouth (NJ, USA), 1981.
- D.W. Allan, M. A. Weiss, and J. L. Jespersen. A frequency-domain view of time-domain characterization of clocks and time and frequency distribution systems. In Proceedings of the 45th FCS, pp. 667–678, Los Angeles (CA, USA), 1991.
- J. E. Deeter and P. E. Boynton. Techniques for the estimation of red power spectra. I. Context and methodology. The Astrophysical Journal, 261:337–350, 1982.
- C. A. Greenhall and W. Riley. Uncertainty of stability variances based on finite differences. In 35th annual Precise Time and Time Interval meeting, pp. 267–280, San Diego (California, USA), 2003.
- C. A. Greenhall, D. A. Howe, and D. B. Percival. Total variance, an estimator of long-term frequency stability. IEEE Trans. on UFFC, 46(5):1183–1191, 1999.
- L. Galleani and P. Tavella. The dynamic Allan variance. IEEE Trans. on UFFC, 56(3):450–464, 2009.
- D. A. Howe. ThêoH: a hybrid, high-confidence statistic that improves on the allan deviation. Metrologia, 43:S322–S331, 2006.
- É. Lantz, C. E. Calosso, E. Rubiola, V. Giordano, C. Fluhr, B. Dubois, and F. Vernotte. KLTS: A rigorous method to compute the confidence intervals for the three-cornered hat and for Groslambert covariance. IEEE Trans. on UFFC, 66(12):1942 1949, 2019.
- W. C. Lindsey and C. M. Chie. Theory of oscillator instability based upon structure function. Proceedings of the IEEE, 64:1652–1666, 1976.
- D.B. Percival. A wavelet perspective on the Allan variance. IEEE Trans. on UFFC, 63(4):538 554, 2016.
- E. Rubiola, M. Lenczner, P.-Y. Bourgeois, and F. Vernotte. The omega counter, a frequency counter based on the linear regression. IEEE Trans. on UFFC, 63(7):961–969, 2016.
- E. Rubiola and F. Vernotte. The Companion of Enrico's Chart for Phase Noise and Two-Sample Variances. IEEE Trans. Microw. Theory Techn., 71(7):2996–3025, 2023
- J. Rutman. Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress. Proceedings of the IEEE, 66(9):1048–1075, 1978.
- F. Vernotte. Application of the moment condition to noise simulation and to stability analysis. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(4):508–513, 2002.
- F. Vernotte. Métrologie Temps-Fréquence, volume Mesures et tests électroniques of Mesures Analyse, chapter Stabilité temporelle et fréquentielle des oscillateurs : modèles, pp. R680/1–R680/10 and chapter Stabilité temporelle et fréquentielle des oscillateurs : outils d'analyse, pp. R681/1–R681/10. Techniques de l'Ingénieur, Paris, 2006.
- F. Vernotte, J. Delporte, M. Brunet, and T. Tournier. Uncertainties of drift coefficients and extrapolation errors: Application to clock error prediction. Metrologia, 38(4):325–342, 2001.
- F. Vernotte, J. Groslambert, and J.J. Gagnepain. Oscillator noise analysis: multivariance measurement. IEEE Transactions on Instrumentation and Measurement, 42(2):342–350, 1993.
- 🗣 F. Vernotte and É. Lantz. Statistical biases and very long term time stability analysis. IEEE Transactions on Ultrasonics, Ferroelectics and Frequency Control, 59(3):523–530, 2012.

Distrib. Sécur. du Temps et Systèmes Spatiaux 2024 F. Vernotte

Concepts et Outils de la Métrologie Temps-Fréquence